Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(14): 22308-22322, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475345

RESUMO

We report the development and characterization of a detection technique for scattering-type scanning near-field optical microscopy (s-SNOM) that enables near-field amplitude and phase imaging at two or more wavelengths simultaneously. To this end, we introduce multispectral pseudoheterodyne (PSH) interferometry, where infrared lasers are combined to form a beam with a discrete spectrum of laser lines and a time-multiplexing scheme is employed to allow for the use of a single infrared detector. We first describe and validate the implementation of multispectral PSH into a commercial s-SNOM instrument. We then demonstrate its application for the real-time correction of the negative phase contrast (NPC), which provides reliable imaging of weak IR absorption at the nanoscale. We anticipate that multispectral PSH could improve data throughput, reduce effects of sample and interferometer drift, and help to establish multicolor s-SNOM imaging as a regular imaging modality, which could be particularly interesting as new infrared light sources become available.

2.
Nature ; 562(7728): 557-562, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30356185

RESUMO

Polaritons-hybrid light-matter excitations-enable nanoscale control of light. Particularly large polariton field confinement and long lifetimes can be found in graphene and materials consisting of two-dimensional layers bound by weak van der Waals forces1,2 (vdW materials). These polaritons can be tuned by electric fields3,4 or by material thickness5, leading to applications including nanolasers6, tunable infrared and terahertz detectors7, and molecular sensors8. Polaritons with anisotropic propagation along the surface of vdW materials have been predicted, caused by in-plane anisotropic structural and electronic properties9. In such materials, elliptic and hyperbolic in-plane polariton dispersion can be expected (for example, plasmon polaritons in black phosphorus9), the latter leading to an enhanced density of optical states and ray-like directional propagation along the surface. However, observation of anisotropic polariton propagation in natural materials has so far remained elusive. Here we report anisotropic polariton propagation along the surface of α-MoO3, a natural vdW material. By infrared nano-imaging and nano-spectroscopy of semiconducting α-MoO3 flakes and disks, we visualize and verify phonon polaritons with elliptic and hyperbolic in-plane dispersion, and with wavelengths (up to 60 times smaller than the corresponding photon wavelengths) comparable to those of graphene plasmon polaritons and boron nitride phonon polaritons3-5. From signal oscillations in real-space images we measure polariton amplitude lifetimes of 8 picoseconds, which is more than ten times larger than that of graphene plasmon polaritons at room temperature10. They are also a factor of about four larger than the best values so far reported for phonon polaritons in isotopically engineered boron nitride11 and for graphene plasmon polaritons at low temperatures12. In-plane anisotropic and ultra-low-loss polaritons in vdW materials could enable directional and strong light-matter interactions, nanoscale directional energy transfer and integrated flat optics in applications ranging from bio-sensing to quantum nanophotonics.

3.
Nano Lett ; 17(10): 5908-5913, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28809573

RESUMO

As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.

4.
Nat Commun ; 8: 14402, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198384

RESUMO

Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm-1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.

5.
Nat Commun ; 4: 2890, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24301518

RESUMO

Mid-infrared spectroscopy is a widely used tool for material identification and secondary structure analysis in chemistry, biology and biochemistry. However, the diffraction limit prevents nanoscale protein studies. Here we introduce mapping of protein structure with 30 nm lateral resolution and sensitivity to individual protein complexes by Fourier transform infrared nanospectroscopy (nano-FTIR). We present local broadband spectra of one virus, ferritin complexes, purple membranes and insulin aggregates, which can be interpreted in terms of their α-helical and/or ß-sheet structure. Applying nano-FTIR for studying insulin fibrils--a model system widely used in neurodegenerative disease research--we find clear evidence that 3-nm-thin amyloid-like fibrils contain a large amount of α-helical structure. This reveals the surprisingly high level of protein organization in the fibril's periphery, which might explain why fibrils associate. We envision a wide application potential of nano-FTIR, including cellular receptor in vitro mapping and analysis of proteins within quaternary structures.


Assuntos
Nanotecnologia/métodos , Proteínas/análise , Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Desenho de Equipamento , Ferritinas/química , Halobacterium salinarum/química , Insulina/química , Modelos Moleculares , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Vírus do Mosaico do Tabaco/química
6.
Nano Lett ; 13(3): 1065-72, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23362918

RESUMO

We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.

7.
J Phys Chem Lett ; 4(9): 1526-31, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-26282309

RESUMO

Scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for nanoscale chemical material identification. Here, we push s-SNOM and nano-FTIR one important step further by enabling them to quantitatively measure local dielectric constants and infrared absorption. Our technique is based on an analytical model, which allows for a simple inversion of the near-field scattering problem. It yields the dielectric permittivity and absorption of samples with 2 orders of magnitude improved spatial resolution compared to far-field measurements and is applicable to a large class of samples including polymers and biological matter. We verify the capabilities by determining the local dielectric permittivity of a PMMA film from nano-FTIR measurements, which is in excellent agreement with far-field ellipsometric data. We further obtain local infrared absorption spectra with unprecedented accuracy in peak position and shape, which is the key to quantitative chemometrics on the nanometer scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...